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Effective analysis of reaction time data

Robert Whelan

University College Dublin

Most analyses of reaction time (RT) data are conducted by using the statistical 

techniques with which psychologists are most familiar, such as analysis of vari-

ance on the sample mean. Unfortunately, these methods are usually inappropri-

ate for RT data, because they have little power to detect genuine differences in 

RT between conditions. In addition, some statistical approaches can, under cer-

tain circumstances, result in findings that are artifacts of the analysis method 

itself. A corpus of research has shown more effective analytical methods, such 

as analyzing the whole RT distribution, although this research has had limited 

influence. The present article will summarize these advances in methods for 

analyzing RT data.

Reaction time (RT; also called response time or latency), the time taken 
to complete a task, has been a common dependent measure in psychology 
for many years. Most researchers analyze RT data by conducting an analysis 
of variance (ANOVA) on the sample mean (Van Zandt, 2002): this type of 
statistical approach may not be effective, however, owing to the particular 
characteristics of RT data. Statistically, RTs are treated as random variables: 
that is, observed RTs, even from the same subject in the same condition, vary 
somewhat across trials. Reaction times collected in a particular experimental 
condition are assumed to represent a sample of the population of RTs from that 
condition. They are assumed to be identically and independently distributed 
(iid), although this is rarely the case in practice because of factors, such as 
fatigue and sequential effects, that are generally assumed to be of negligible 
impact and are therefore ignored (cf. Thornton & Gilden, 2005). Importantly, 
response-time distributions are not Gaussian (normal) distributions but rather 
rise rapidly on the left and have a long positive tail on the right (see Figure 1).  
Reaction-time distributions are similar to the ex-Gaussian distribution (Luce, 
1986), which is a convolution (mixture) of a Gaussian and an exponential 
distribution that has been shown to fit empirical RT distributions well (e.g., 
Balota & Spieler, 1999). This distribution has three parameters. The mean and 
the standard deviation of Gaussian (the left hump) are described by mu (μ) 
and sigma (δ), respectively. Tau (τ) describes both the mean and the standard 
deviation of the exponential component (the right tail). 

Robert Whelan, School of Medicine and School of Engineering, University College Dublin.

Address correspondence to Robert Whelan, Department of Psychiatry, St. Vincent’s University 

Hospital, Elm Park, Dublin 4, Ireland. E-mail: robert.whelan@ucd.ie



476 Whelan

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600 1800
Reaction time

Fr
eq

u
en

cy

Figure 1. A simulated ex-Gaussian distribution showing the characteristic shape of 
reaction time distributions, including the parameters mu, sigma, and tau.

Typically, some observed RTs are not a result of the process of interest. 
For example, Luce (1986) demonstrated that genuine RTs have a minimum 
value of at least 100 ms: time needed for physiological processes such as 
stimulus perception and for motor responses. Reaction times below this 
value could be the result of fast guesses, for example. It is easy to identify 
these very fast RTs, and they are normally eliminated by using a cutoff of 
between 100 ms and 200 ms. Response times in the middle of the distribution 
that are due to spurious processes are impossible to identify, because they 
are intermixed with genuine RTs. There is nothing that can be done—beyond 
tight experimental control during the task itself—to attenuate the effects of 
these responses. It is quite common for some RTs to be slow because the 
subject is inattentive, and these RTs can strongly influence the outcome of 
hypothesis tests. There are a number of techniques for dealing with spurious 
slow RTs, and these will be discussed in more detail below in the context of 
the different analysis methods. 

Central Tendency Approaches

The most common method of analyzing RT data is to report a central 



477Reaction Time Analysis

tendency parameter (e.g., the mean) and a dispersion parameter (e.g., the 
standard deviation). The mean difference in RT across conditions is then 
often analyzed by using ANOVA. However, using hypothesis tests on data 
that are skewed, contain outliers, are heteroscedastic, or have a combination 
of these characteristics (raw RT data typically have at least the first two) 
reduces the power of these tests and can result in a failure to detect a real 
difference between conditions (Wilcox, 1998). For example, Ratcliff (1993) 
demonstrated that when the difference between conditions was in mu (i.e., 
the distribution was shifted to the right) and the data included outliers, the 
ability to detect the difference with an ANOVA on mean RT was severely 
reduced. This type of analysis is common (Van Zandt, 2002); for example, in 
Dibbets, Maes, and Vossen (2002) and Fields, Landon-Jimenez, Buffington, 
and Adams (1995) mean raw RT was reported. To obtain a better measure 
of central tendency, assuming that the difference between conditions 
is contained in the middle 85%–95% of the RT distribution, researchers 
can delete some proportion of the extreme trials, transform the data, or 
accommodate the outliers by using parameters that are less sensitive to 
outliers. Ratcliff (1993) investigated the effect of these methods by using 
Monte Carlo simulations on RT data. No method greatly affected the number 
of Type I errors, but the power varied considerably across methods. The 
most common approaches are discussed below.

Cutoffs eliminate slow RTs by excluding data longer than some absolute 
time, some percentage of the data, or data that are some proportion of 
standard deviations above the mean. According to Ratcliff (1993), when the 
difference between conditions was in mu, eliminating RTs above an absolute 
cutoff point maintained the highest power. However, when the effect was in 
tau and there were no outliers, the use of absolute cutoffs reduced power 
because real data were eliminated. When the effect was in tau and there were 
outliers, then absolute cutoffs had the potential to increase power, although 
if the cutoff was too large then power was decreased because genuine RTs 
were eliminated. The disadvantage of this method is that no reliable rule 
can be used to establish absolute cutoffs because they are highly dependent 
on the particular data that were observed. Consequently, cutoffs are often 
based on the standard deviation (e.g., exclude RTs greater than two standard 
deviations above the mean). Ratcliff found that basing cutoffs on the standard 
deviation could have very adverse effects on power, depending on whether 
the experimental factors had their effects on the fast or slow RTs (e.g., 2 
conditions might differ only in the slower responses). Furthermore, Ulrich 
and Miller (1994) showed that cutoffs can introduce asymmetric biases into 
statistics such as the sample mean, median, and standard deviation and warn 
against using cutoffs without allowing for these effects.

Data transformations have the potential to lessen the impact of outliers 
or skew, or both, by reducing larger values to a greater extent than smaller 
values. Transforming RTs to speed (i.e., the reciprocal of latency) normalizes 
the distribution somewhat, reduces the effect of slow outliers, and therefore 
generally maintains good power (e.g., Imam, 2006; Spencer & Chase, 1996; 
c.f., Greenwald, Nosek, & Banaji, 2003). Ratcliff (1993) reported that this was 
the next most powerful approach after cutoffs for minimizing the effects of 
outliers. Transforming data by using the logarithm of each RT normalizes 
the distribution more than the inverse transformation, although the effect 
of long RTs is not attenuated to the same extent as the inverse, and therefore 



478 Whelan

power is reduced relative to the inverse transformation. Researchers should be 
careful about transforming data, however, because it is possible to eliminate 
significant effects by transformation. There are also issues of interpretation 
after transformation of a variable, because the relationship among the 
variables has been changed (Osborne, 2002). 

Neither the mean nor standard deviation are said to be robust measures. 
That is, the mean is not reflective of the typical response if the distribution 
is skewed, because the mean is distorted in the direction of the skew. The 
standard deviation can be greatly increased by a relatively low number of 
slow RTs. Therefore, many researchers report the median RT as a central 
tendency parameter, because it is less susceptible to departures from 
normality (i.e., robust). The interquartile range (the range between the third 
and first quartiles) is a robust method of estimating the dispersion. Ratcliff 
(1993) reported that using the median generally resulted in lower power than 
using cutoffs or transformations. This was the case when the effect was in 
mu or tau, and both with and without outliers. However, when there was large 
variability among participants the median had more power than some other 
methods, such as the inverse transformation.

A difficulty with using the median is that unlike the sample mean, it is 
a biased estimator of the population median when the population is skewed 
(a biased estimator does not, on average, equal the value of the parameter 
or function that it estimates): the true population median will, on average, 
be underestimated. This is not a problem when comparing conditions with 
the same number of trials, because the bias is approximately equal across 
conditions. Crucially, the bias becomes more extreme as the sample size 
becomes smaller (Miller, 1988) and thus the median is more likely to be 
overestimated in the condition with fewer trials (e.g., Bentall, Jones, & Dickins, 
1998, Experiment 1). The median should never be used on RT data to compare 
conditions with different numbers of trials.

Examining the Whole RT Distributions

Although analysis of the central tendency is the most popular method 
of analyzing RT, there are drawbacks to this approach. The mean RT can be 
the same even if two RT populations are genuinely different. For example, 
the modal part of the distribution (the left hump) can decrease in value while 
the number of data in the tails increases, thus producing a null effect of 
condition. In addition, examining the mean alone could obscure interesting 
details, such as the behavior of fast and slow responses across the conditions 
of an experiment. An increasingly popular approach is to analyze the whole 
distribution itself, thereby discovering effects that would otherwise have 
been missed. 

It is perhaps easiest to describe the benefits of analyzing the whole 
distribution by describing some actual results from a recent study. Hervey 
and colleagues (2006) employed a Go/No go task to measure differences in 
neuropsychological performance between children with attention deficit 
hyperactivity disorder (ADHD) and control subjects. Reaction times faster 
than 100 ms were eliminated. The traditional RT measures—sample mean 
and standard deviation—showed that children with ADHD were significantly 
slower and more variable in responding than children in the control group. 
However, when the ex-Gaussian measures of RT were employed, a different 
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pattern of results emerged. Children with ADHD demonstrated faster reaction 
times on the mean of the normal component of the ex-Gaussian RT curve 
compared with normal controls (296 ms vs. 319 ms, respectively). However, 
the difference between groups was largest on the exponential part of the 
curve, tau, indicating that children with ADHD had a greater number of RTs 
that were well beyond their mean performance than did the control group (229 
ms vs. 144 ms, respectively). The authors concluded that children with ADHD 
were not generally slower than controls but rather were prone to attentional 
lapses on some trials. Balota and Spieler (1999) analyzed data from a lexical 
decision task using this approach. 

One drawback of analyzing the whole distribution is that many data 
points per participant and condition are required, which may be difficult to 
obtain in practice. Recently, Rouder, Sun, Speckman, Lu, and Zhou  (2003; see 
Rouder, Lu, Speckman, Sun, and Jiang, 2005 for a more accessible account) 
have described a distribution that adequately describes RT data, even if there 
are relatively few data points per participant. Distributional analyses are 
also subject to the influence of outliers. Ratcliff (1993) reported that absolute 
cutoffs work well when the outliers are extreme. If, however, the outliers are 
intermixed with genuine RTs then the parameters will be overpredicted when 
using cutoffs, although trends in the data will be preserved. 

Aggregating RT Data

The most common method to aggregate RT data is parameter averaging 
(e.g., averaging mu, sigma, and tau across subjects). However, the situation 
is complicated because individual differences across measures of central 
tendency, dispersion, or distributional shape can be considerable (Luce, 
1986). A method called Vincentizing is often used to address this problem. 
With this approach, estimates of the quantiles (the percentage of points 
below the given value; 0.4 quantile means that 40% of the data are below and 
60% are above that value) of individual observers’ distributions are aligned 
to produce an estimate of the aggregate distribution (see Ratcliff, 1979, for a 
detailed discussion of this issue). This approach is not without its limitations, 
however, and Rouder and Speckman (2004) have demonstrated that parameter 
averaging outperforms Vincentizing as sample size increases.

Implementation of These Methods

It is easy to employ many of these analytic approaches. For instance, if the 
raw data are stored in Microsoft Excel format, then Excel’s built-in formulas can 
be used to efficiently conduct simple data analyses, such as transformations 
(see the appendix for a list of usable formulas). However, Excel should not 
be used to conduct inferential statistical and some types of descriptive 
calculations (e.g., quartiles; McCullough & Wilson, 2002). Programs such as 
SPSS, SAS, and the MatLab Statistics Toolbox (http://www.mathworks.com) 
offer the scope to accurately and efficiently calculate the central tendency 
and spread of data. For example, analyzing data with the Explore option in 
SPSS will automatically produce the median, interquartile range, and 5% 
trimmed mean of the data. A number of software programs may be used to 
estimate parameters of various distributions (e.g., the MatLab Distribution 
Fitting Toolbox; see also Van Zandt, 2000). For example, a researcher can use 
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distribution-fitting software to estimate the parameters of the ex-Gaussian 
distribution (mu, sigma, and tau) for each subject and condition. These 
methods typically require some programming knowledge, however.

Conclusion and Recommendations

A key point of the present article is that some statistical approaches, such 
as ANOVA on sample means, are unsuitable for RT data, because power to detect 
differences can be poor. Although some protocols require specific methods of 
analyzing RTs (e.g., Greenwald et al., 2003), some general recommendations for 
analyzing RT data may be made. For example, methods to allow for the effects 
of outliers should be applied carefully. Applying an inverse transformation 
can maintain high power under many situations. An alternative, and perhaps 
superior, approach to analyzing central tendencies is to examine the whole 
distribution, because this method can yield valuable information about the 
differences between conditions. In view of the time and effort required to 
design an experiment and collect data, the use of more advanced analysis 
methods can maximize the return from the obtained data.
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Appendix: Formulas and Results for Analyzing RT Data  
with Microsoft Excel

Examples of transformations and cutoffs are given for cell A1. Data that 
are cut off are replaced with text, thereby excluding the contents of that cell 
from subsequent analyses. The central tendency and dispersion calculations 
are given for cells A1:A10. The formulas should be entered into cells other than 
those in which the raw RTs are stored (e.g., enter the formulas in column B).

Desired Result Formula

Mean = AVERAGE(A1 : A10)

Standard Deviation = STDEV(A1 : A10)

Cutoff RTs < 200 ms = IF(A1<200,“FAST”,A1)

Cutoff RTs > 2500 ms = IF(A1>2500,“SLOW”,A1)

Cutoff RTs > 3 standard deviations = IF(A1>(STDEV(A1 : A10)*3),“SLOW”,A1)

Speed (1/RT) = 1/A1

Log (base 10) = LOG10(A1)

Median = MEDIAN(A1 : A10)

Interquartile range Do not use Excel




