Behav Res
DOI 10.3758/s13428-014-0458-y

jsPsych: A JavaScript library for creating behavioral experiments

in a Web browser

Joshua R. de Leeuw

© Psychonomic Society, Inc. 2014

Abstract Online experiments are growing in popularity, and the
increasing sophistication of Web technology has made it possible
to run complex behavioral experiments online using only a Web
browser. Unlike with offline laboratory experiments, however,
few tools exist to aid in the development of browser-based
experiments. This makes the process of creating an experiment
slow and challenging, particularly for researchers who lack a
Web development background. This article introduces jsPsych, a
JavaScript library for the development of Web-based experi-
ments. jsPsych formalizes a way of describing experiments that
is much simpler than writing the entire experiment from scratch.
jsPsych then executes these descriptions automatically, handling
the flow from one task to another. The jsPsych library is open-
source and designed to be expanded by the research community.
The project is available online at www.jspsych.org.

Keywords Online experiments - JavaScript - Amazon
Mechanical Turk

Putting an experiment online, particularly when it is coupled
with a crowdsourcing marketplace like Amazon’s Mechanical
Turk, enables extremely rapid data collection at much lower
cost than a comparable experiment in a laboratory environ-
ment. Although online experiments will not work for every
kind of experiment, some studies produce similar results for
laboratory and online experiments across a range of behavior-
al tests (Buhrmester, Kwang, & Gosling, 2011; Crump,
McDonnell, & Gureckis, 2013; Goodman, Cryder, &
Cheema, 2013; Paolacci, Chandler, & Ipeirotis, 2010;
Zwaan & Pecher, 2012). Although some concerns remain
about certain kinds of behavioral experiments, such as

J. R. de Leeuw (D)

Department of Psychological & Brain Science, Cognitive Science
Program, Indiana University, Bloomington, IN, USA

e-mail: jodeleeu@indiana.edu

Published online: 28 March 2014

cognitive-learning and priming paradigms (Crump et al.,
2013), the general consensus seems to be that online experi-
ments produce results similar to those of laboratory experi-
ments for many tasks. Given the cost and time savings of
online experiments, plus such additional benefits as easy
access to a different subject pool demographic than under-
graduate college students (Ross, Irani, Silberman, Zaldivar, &
Tomlinson, 2010), the popularity of online experiments seems
likely to grow over the next several years.

In order to conduct an online experiment, researchers must
design experiments that either can be downloaded to a subject’s
local computer or can be run in a Web browser. There are many
options for running experiments in a Web browser: Platforms
such as Qualtrics (www.qualtrics.com) and Amazon’s
Mechanical Turk (www.mturk.com) have simple templates
that can be customized with a point-and-click-style interface.
WEXTOR (Reips & Neuhaus, 2002) is an online graphical user
interface designed for building Web-based survey-like experi-
ments that offers more flexibility than does something like
Mechanical Turk, but the content that can be included is limited
by the built-in functionality of the system. Alternatively, exper-
imenters can write their own customized code to achieve de-
signs that may not be possible otherwise. With the increasing
sophistication of Web technology, it is now possible to create
many different kinds of computer-based behavioral experi-
ments in a Web browser. In particular, the adoption of HTML5
by all of the major Web browsers enables programmatic control
over both pixel- and vector-based graphics embedded in a
website, allowing rich graphical interactions akin to playing a
videogame. However, programming these experiments can be
challenging and may require substantial experience in Web
development, particularly for more complicated designs.

This article introduces an open-source JavaScript library
called jsPsych, which accelerates the development process for
browser-based experiments. The library contains code to per-
form a variety of tasks that are common across behavioral

@ Springer


http://www.jspsych.org/
http://www.qualtrics.com/
http://www.mturk.com/

Behav Res

experiments, such as displaying a stimulus, getting a response,
and measuring response times. It also formalizes a structure
for describing experiments, which enables experimenters to
create experiment descriptions, and thus the corresponding
experiment, by writing only a few lines of code. The library
is designed so that experiments can be assembled from differ-
ent components, called plugins. By providing plugins that can
be used in different experimental contexts, jsPsych allows
researchers to create custom experiments without generating
all of the necessary code from scratch. Since the library is
based on a modular architecture, researchers can share and
utilize new plugins as they are developed, without any cen-
tralized modification to the library. The design of the library is
covered in the next section of this article.

The main purpose of jsPsych is to control the content that the
subject will interact with during the experiment. Note that
jsPsych will not handle several other aspects of creating an
online experiment: For example, although jsPsych will record
all of the data generated by a subject, it will not store the data in
a database or other permanent location on the Web server. The
experimenter must decide how to handle and implement data
storage. (The online documentation contains examples of how
to do this, but there are many possible solutions, and jsPsych is
agnostic as to which to use.) If jsPsych is used to create an
experiment for Mechanical Turk or other crowdsourcing mar-
ketplace, numerous steps must be gone through in order to
launch the experiment on these platforms (for an excellent
primer, see Mason & Suri, 2012). One possibility is to combine
jsPsych with something like psiTurk (McDonnell et al., 2012),
a framework that handles all of the “back-end” aspects of
running an online experiment, such as hosting the experiment
on a server and interfacing with Mechanical Turk to get subjects
to complete the experiment. jsPsych complements this library
nicely. psiTurk can be used to serve a jsPsych-based experi-
ment, simplifying both the front-end (what the subject sees;
jsPsych’s specialty) and back-end (server hosting and interfac-
ing with Mechanical Turk, psiTurk’s specialty) aspects of on-
line experiments. Finally, it is worth noting that jsPsych can be
used for offline experiments, as well. Websites can be devel-
oped and hosted locally on a laboratory computer, which sub-
jects can then complete without ever connecting to the Internet.
Since there are very few differences between developing a
browser-based experiment for the lab and for an online envi-
ronment, the same code can be used to run the experiment in
both locations, if desired. This may be a particularly useful
feature for checking the validity of online experiments against
those conducted in the laboratory.

Overview of jsPsych

jsPsych is an open-source project hosted, at the time of writing
this article, by GitHub. The URL for the project is www.

@ Springer

jspsych.org. The project website contains all of the source
code for the current and previous versions of jsPsych, as
well as a wiki containing additional documentation.
Extensions or modifications of jsPsych can be integrated
into the project through GitHub, enabling the community of
users to share code.

In the basic workflow of jsPsych, the experimenter gener-
ates a description of the experiment, making use of various
jsPsych plugins, and then the core jsPsych library is used to
execute the experiment in conjunction with the appropriate
plugins. The core library provides a set of functions that are
necessary across all experiments, but plugins are where the
bulk of the action is. Each jsPsych plugin defines a task that a
subject might engage in during an experiment. Examples
include: reading instructions and pressing a key to continue,
categorizing a stimulus and receiving feedback, responding as
quickly as possible to a stimulus, and answering a survey
question. At the time of writing, 14 plugins were well-tested
and well-documented (see Table 1), and an additional 13
plugins either were in earlier stages of development or were
not well-documented. The completed plugins can be found in
the plugins folder (available at the jsPsych project website),
and the plugins that are in development can be found in the
dev folder, which is a subfolder of the plugins folder.

In describing the process of generating an experiment with
jsPsych, I will use two terms: trials and blocks. Trials are the
basic unit of jsPsych. Each plugin defines the process of
executing a trial. For example, the jspsych-categorize plugin
defines a trial consisting of presenting a stimulus to the sub-
ject, getting a response, and presenting feedback. All of this
functionality is embedded within the plugin, and the experi-
menter only has to define a small set of parameters to utilize it.
To use the jspsych-categorize plugin, the experimenter would
define the stimulus, the acceptable responses, and the text
used to give feedback. Other plugins have different parameters
that are specific to their functionality.

A block is a collection of trials that are all defined by the
same plugin, and thus all have the same overall structure. A
block of categorization trials might involve the successive
categorization of a few dozen stimuli, for example. Creating
an experiment with jsPsych involves defining a series of
blocks and then telling jsPsych to execute the experiment that
has been defined. As is shown in the tutorial section of this
article, this process is relatively simple, and certainly easier
than writing the full program that would provide the equiva-
lent functionality from scratch. Once a description of the
experiment is created, the core library handles the execution
of the experiment, keeping track of where the user is in the
experiment and delegating control to the various plugins when
appropriate.

Two key goals in the design of jsPsych were modularity
and expandability. Both are achieved by using the core +
plugin architecture. jsPsych is highly modular; only the core


http://www.jspsych.org/
http://www.jspsych.org/

Behav Res

Table 1 List of jsPsych plugins

Plugin File

Description of Trial

jspsych-animation.js

Displays a sequence of images at a specified frame rate. Sequence can be

looped for a specified number of times. Timing of subject keyboard responses
is recorded.

jspsych-call-function.js

Calls a specified function. This allows the experimenter to insert arbitrary

function calls throughout the experiment.

jspsych-categorize.js

Displays an image or HTML object. Subject gives a keyboard response.

Feedback is provided about the correctness of the subject’s response.

jspsych-categorize-animation.js

Displays a sequence of images at a specified frame rate. Subject gives a

keyboard response. Feedback is provided about the correctness of the
subject’s response.

jspsych-free-sort.js

Displays a collection of images on the screen that the subject can interact

with by clicking and dragging. All of the moves that the subject
performs are recorded.

jspsych-html.js

Displays an external HTML document (often a consent form). Either a

keyboard response or a button press can be used to continue to the
next trial. Allows the experimenter to check if conditions are met
(such as indicating informed consent) before continuing.

jspsych-palmer.js

Displays a programmatically generated stimulus designed to mimic stimuli

used by Palmer (1977) and Goldstone and colleagues (Goldstone,
Rogosky, Pevtzow, & Blair, 2005). Gives the option to allow the subject
to manipulate the stimulus (for example, to test the subject’s ability to
recreate a stimulus that they previously saw). Can optionally display
corrective feedback if the stimulus is editable.

jspsych-same—different.js

Displays two stimuli sequentially. Stimuli can be images or HTML

objects. Subject responds using the keyboard, and indicates whether
the stimuli were the same or different. Same does not necessarily
mean identical; a category judgment could be made, for example.

jspsych-similarity.js

Displays two stimuli sequentially. Stimuli can be images or HTML

objects. Subject uses a draggable slider that is shown on screen to
give a response. Anchor labels for the slider can be specified.

jspsych-single-stim.js

Displays an image or HTML object. Subject gives a response using

the keyboard.

jspsych-survey-likery.js

Displays a set of questions with Likert scale responses. Subject uses

a draggable slider to respond to the questions.

jspsych-survey-text.js

Displays a set of questions with free response text fields. Subject

types in answers.

jspsych-text.js

Displays HTML formatted text. Variables can be inserted at the moment

the text displays (useful for giving overall accuracy feedback, for
example). Subject presses a specified key to continue.

jspsych-xab.js

Displays either an image or HTML object stimulus (X). After a short gap,

displays two additional stimuli (A and B). Subject selects which of the
two stimuli matches X using the keyboard.

The columns display a list of jsPsych plugins and a brief description of the trial structure that each defines. More information, including a working
example for each plugin, is available at the project wiki (https:/github.com/jodeleeuw/jsPsych/wiki/List-of-Plugins).

library and plugins that are actually used by an experiment are
required to be included in the experiment Web page. Plugins
are designed so that they can interact with any other subset of
plugins. Creating a new plugin allows jsPsych to be expanded
by experienced programmers. Plugins have a very flexible
structure, making it possible to create a plugin to define most
kinds of trials that an experiment requires. The hope is that as
more experiments are created using jsPsych, the library of
available plugins becomes large enough that most

experiments can be developed by assembling preexisting
plugins and writing only a few dozen lines of code (this is
already possible with the currently available plugins for many
common types of experiments that psychologists conduct).
For a detailed description of how to create a plugin, see
this wiki page at the jsPsych project website: https:/
github.com/jodelecuw/jsPsych/wiki/Create-a-Plugin. The
use of preexisting plugins is covered in the tutorial
part of the article.

@ Springer


https://github.com/jodeleeuw/jsPsych/wiki/Create-a-Plugin
https://github.com/jodeleeuw/jsPsych/wiki/Create-a-Plugin
https://github.com/jodeleeuw/jsPsych/wiki/List-of-Plugins

Behav Res

Features of the core library

Although most of the code used to run an experiment will
exist in the plugins, the core library is the glue that holds
everything together. Besides handling the execution of the
experiment, the core library has a few other functions that
range from critical (e.g., data storage) to optional.

Data storage Whenever a plugin stores data, it should call the
writeData() method defined in the core library. This method
does two important things. First, it stores the data in memory
so that it can be retrieved later by various jsPsych functions.
Second, it invokes a function call to indicate that new data has
been recorded (see the next section on event related function
calls). At any point, the method jsPsych.data() can be called to
recover all of the data stored so far. The data is organized as a
multilevel array. The top level corresponds to each block of
the experiment. The second level corresponds to individual
trials. Each second level element is a JavaScript object defined
by the plugin that stored the data. Plugins can store arbitrarily
defined objects, allowing any kind of data to be stored. The
object returned by calling jsPsych.data() can be represented as
a JSON (JavaScript object notation) string, enabling relatively
simple transfer between jsPsych and other programming lan-
guages, such as R, for further data analysis.

Data from jsPsych can also be retrieved as comma-
separated value (CSV) strings, suitable for importing into
spreadsheet or statistical analysis packages. The method
jsPsych.dataAsCSV() will return a string containing all of
the data in CSV format. Another method, which has limited
support (see the Current Limitations section), is to write a
CSV file to the hard drive of the computer running jsPsych, by
calling the jsPsych.saveCSVdata() method (the tutorial sec-
tion of this article will give an example of using both of these
methods). However, this is not the recommended way to save
data. Rather, it is meant to be used as a quick way to check the
data during the development process. Ultimately, data should
be saved in a database or as a file on the server hosting the
experiment. This ensures that the experimenter can access the
data, and that they are securely stored. The online documen-
tation gives some pointers on how to accomplish this.

Event-related function calls Certain events in the course of an
experiment are designed to trigger calls to functions. These
functions can be specified by the experimenter, meaning that
arbitrary code can execute when these events happen. The
four events that trigger a function call are (1) the moment
before a trial begins, (2) the moment after a trial ends, (3) the
end of the experiment, and (4) the moment that data are
recorded. No built-in functionality is associated with these
events, and the events can be used (or not used) however the
experimenter sees fit. As an example, the event that occurs
when data is recorded could be used to permanently store the

@ Springer

new data in a database, enabling data to be progressively
saved while the experiment is being completed.

Progress tracking The core library keeps track of how many
trials are completed and how many are left in the experiment.
Calling jsPsych.progress() returns a JavaScript object with
information about the total number of blocks in the experi-
ment, the total number of trials in the experiment, the current
trial number (relative both to the whole experiment and to the
current block), and what the current block number is. This can
be used in a variety of ways. One common use case is to
combine the progress information with the event related func-
tion call that occurs when a trial ends. A function can be
specified that checks the current progress and updates a prog-
ress bar on the screen, so that the subject is aware of their
approximate position in the experiment.

Preloading images For many experiments, it is important to
preload image files. This ensures that images will display in the
browser as soon as jsPsych attempts to display them, rather than
having to wait for them to be downloaded from the server hosting
the experiment. To facilitate preloading of images, jsPsych has a
built in preloading function: jsPsych.preloadlmages(). This
function has optional callback function parameters that can be
triggered as images load and when all images finish loading.
These can be used to display a loading progress screen, and to
wait until all images are loaded before beginning the experiment.

Interfacing with amazon mechanical turk Since Mechanical
Turk is a common way to recruit subjects for online experi-
ments, jsPsych provides some basic functionality to interface
with Mechanical Turk. The jsPsych.turkInfo() method returns
a JavaScript object containing the Mechanical Turk worker
ID, HIT ID, and assignment ID. It also determines whether the
page was loaded from Mechanical Turk, which can be useful
to prevent unauthorized users from completing the
experiment.

Keeping track of experiment start time Finally, the core li-
brary records the time that the experiment began. This can be
useful when determining how long a subject took to get
through an experiment. This is particularly useful in an online
context, where subjects could get up and leave their computer
in the middle of the experiment and return later to complete it.

Current limitations

jsPsych was initially created as a way of rapidly building
relatively simple experiments. Although the complexity of
possible experiments is now quite high, there are still some
limitations. Because the library is built around the idea of
creating an experiment description before executing the ex-
periment, it does very well with static experiments, but has



Behav Res

few features for dynamically altering the course of the exper-
iment as the subject is engaged. The software has no core
library features to handle conditional or looping changes in the
experiment structure. One solution, though perhaps not an
ideal one, is to create a plugin that implements conditional
changes for the specific task. A plugin in the /dev folder,
called jspsych-adaptive-category-train, implements a specific
category-training protocol in which subjects must reach a
certain threshold of performance on a category learning task.
It does this by treating the entire training protocol as a single
trial, and implementing the conditional logic within the trial
structure. Although this works, it is not a particularly elegant
or general solution. At the moment, jsPsych is best used in
cases in which the structure of the experiment is completely
known before the subject begins. There are plans to imple-
ment a general set of conditional structures in the core library
for the future.

Browser compatibility is always a major concermn for any
Web development project. The core library and most plugins
will work in all of the latest versions of the major browsers
(Chrome, Firefox, Safari, and Internet Explorer). jsPsych has
been tested most thoroughly in Chrome; other browsers may
have compatibility issues that haven’t been discovered yet.
One feature that is only available in Chrome and Firefox is the
ability to write the data to a local text file. If you are planning
to use this feature in a laboratory environment, Chrome is the
best option.

One specific kind of browser compatibility issue worth
noting is the use of mobile devices and tablets with Web
browsers. The core jsPsych library works with these devices,
but specific plugins may need to be used for certain kinds of
devices. For example, devices that use touchscreens in lieu of
a mouse require different plugins when touch-based interac-
tion is required, and some devices may lack a dedicated
keyboard, making certain kinds of user interaction different,
such as responding to a stimulus by pressing a key. All of the
supported plugins at the time of writing this article were
designed for traditional mouse and keyboard interaction, but
jsPsych has been used with the iPad in laboratory
environments to collect touch-response data. The plugin
used for this experiment is jspsych-storybook, located in
the /dev folder. It may be a useful example for devel-
oping this kind of tool.

If one is concerned about browser compatibility issues for a
particular experiment, then the best course of action is to use
JavaScript’s feature detection capabilities to determine wheth-
er the browser is capable of running the experiment. This can
be done before the experiment starts, with an error message
being displayed if the browser is not compatible. A summary
of feature detection is available at http:/learn.jquery.com/
code-organization/feature-browser-detection/. Currently,
automatic feature detection is not integrated into jsPsych, but
it is something that will likely be added in the future.

Finally, measuring response times (RTs) with JavaScript
has inherent limitations that researchers should be aware of.
When responses like pressing a key are generated by the
subject, they are treated as events by JavaScript and added
to an event-processing queue. The time it takes to processes
the event will depend on a number of factors, including which
browser the subject is using, how fast their computer is, and
the number of other tasks that the computer is executing.
Researchers should treat JavaScript-based RT measures with
some caution, though certain factors will mitigate these prob-
lems: within-subjects RT differences will be more reliable
than between-subjects RT differences since within-subjects
designs eliminate variability caused by computer hardware
and software, and long RTs will be less sensitive to these
problems than short RTs because the relative magnitude of
the noise caused by the event-driven processing will be less.

Creating an experiment with jsPsych: Eriksen flanker
task

The rest of this article is a tutorial, covering how to set up a
simple experiment using the jsPsych library. I have chosen to
use a variation of the Eriksen flanker task (Eriksen & Eriksen,
1974), closely inspired by an article by Kopp and colleagues
(Kopp, Mattler, & Rist, 1994). In the Eriksen flanker task, the
subject responds to a visual stimulus (e.g., a left-pointing
arrow) by pressing a specified key (e.g., the left arrow key).
In some trials, incongruent stimuli (e.g., a right-pointing ar-
row) are presented in the surrounding visual field, flanking the
target, whereas in other trials, congruent (or neutral) items are
presented. It has been consistently found that incongruent
flanking items slow down RTs relative to congruent flankers
(Fox, 1995). This experiment is simple enough to serve as an
introductory tutorial, and hopefully it will clearly illustrate
how to use the jsPsych library to rapidly build experiments.
You can try the complete experiment yourself by going to
www.jspsych.org/examples/tutorial/. You can also download
the completed tutorial, including all of the source code and
image files, at www.jspsych.org/examples/tutorial/download/.
Some background information that might be necessary to
fully understand how the code works is outside the scope of this
article. In particular, T will not be covering HTML, CSS, or
JavaScript fundamentals. A wealth of freely available online
resources can be used to learn the basics of these tools. I will
only be covering how to integrate jsPsych with these tools.

Step 1 Installing jsPsych
For most applications, the Web page containing the exper-
iment will be hosted on a Web server. However, it is just as

easy to develop the experiment on a personal computer. For-
tunately, in both cases the installation process for jsPsych is

@ Springer


http://learn.jquery.com/code-organization/feature-browser-detection/
http://learn.jquery.com/code-organization/feature-browser-detection/
http://www.jspsych.org/examples/tutorial/
http://www.jspsych.org/examples/tutorial/download/

Behav Res

the same. In fact, installation is a bit of a misnomer here, since
all that needs to happen are the following steps:

1. Go to https:/github.com/jodeleeuw/jsPsych/releases or
www.jspsych.org and download the latest version of
jsPsych. At the time of writing, the latest was version 2.0.
You may want to start with that version (available at the first
link) to guarantee that the instructions below will work.

2. Putthe downloaded files in an easy-to-reference location. For
example, if you are developing the experiment in a folder on
your personal computer, you might want to create a subfolder
called “scripts” that will hold the JavaScript files your experi-
ment needs to work. When jsPsych is loaded on the experi-
ment Web page, the location of the files will be referenced.

If you want to follow along and recreate the experiment as [ am
describing it, you should create a folder on your personal com-
puter to hold all of the files that you will need (I will call this folder
the project folder). Within the project folder, create a subfolder
called scripts. Place the jsPsych library in the scripts folder; you
should see jspsych.js in the scripts folder, and a plugins folder that
contains all of the plugins also in the scripts folder.

Step 2 Creating stimuli

For most experiments, you will need to create the stimuli
outside of jsPsych. For this experiment, I have created four
images (Fig. 1). In this version of the Eriksen flanker task,
subjects must press the arrow key that corresponds to the
direction that the middle triangle is pointing. Two stimuli have
congruent flankers, and two have incongruent flankers.

A note for advanced users: One exciting thing about
HTMLS is the possibility of programmatically generating
stimuli using <svg> or <canvas> elements. Many jsPsych
plugins support the display of HTML content, and <svg> or
<canvas> elements could be used in these cases. Libraries
including D3 (www.d3js.org) or Raphael (www.raphaeljs.
com/) can be used to generate interactive stimuli. The

44444
<49 <<
44444

40 44

Fig. 1 The four images that serve as stimuli for the demo experiment.
The file names, in order from top to bottom, are congruent-right.gif,
incongruent-right.gif, congruent-left.gif, and incongruent-left. gif

@ Springer

Jspsych-palmer library uses Raphael to create an interactive
stimulus. This is outside the scope of the tutorial example, but
I mention it here to point out the possibility.

You can download the images in Fig. 1 at www.jspsych.org/
examples/tutorial/download.html. Create a folder called img in the
project folder, and place the four image files inside the img folder.

Step 3 Setting up an HMTL page for jsPsych

jsPsych works by dynamically manipulating the content of
a Web page. To start using jsPsych, only a minimal framework
of'a Web page is needed. The minimal page to run jsPsych will
look something like this:

<!doctype html>
<html>
<head>
<title>My experiment</title>
<script src="scripts/jquery-1.11.0.min.js">
</script>
<script src="scripts/jspsych.js”>
</script>
</head>
<body>
</body>
<script>
// code to initialize jsPsych will go here.
</script>
</html>

This is a very bare-bones HTML document. The only lines
of substance are the two <script> tags contained within the
<head> section of the document. The first links to the jQuery
library (http://jquery.com/), which is a dependency of the
jsPsych library. Without this link, jsPsych will not work.
You can download the jQuery library at http://code.jquery.
com/jquery-1.11.0.min.js. Place the downloaded file in the
scripts folder. The second links to the jspsych.js file, which
is the core library file for jsPsych. If you are following along,
copy the HTML code into a blank document using a basic
text editor (such as Notepad on Windows or TextMate on
0OSX) and save as index.htm! in the project folder. You can
then make sure the file is correctly formatted as an HTML
document by opening it in a Web browser. If you see a blank
window with the title “My experiment” then everything is
working.

Although this is a good template to start from, it will not
actually do anything at this point. Two more aspects are
needed: loading the relevant jsPsych plugins, and a few lines
of JavaScript code that will describe the experiment to be run.

Step 4 Loading jsPsych plugins

As was described earlier in this article, jsPsych is modular;
different plugins are needed to perform different kinds of
trials. The first step in setting up an experiment is determining
which plugins are needed to run the various kinds of tasks that


https://github.com/jodeleeuw/jsPsych/releases
http://www.jspsych.org/
http://www.d3js.org/
http://www.raphaeljs.com/
http://www.raphaeljs.com/
http://www.jspsych.org/examples/tutorial/download.html
http://www.jspsych.org/examples/tutorial/download.html
http://jquery.com/
http://code.jquery.com/jquery-1.11.0.min.js
http://code.jquery.com/jquery-1.11.0.min.js

Behav Res

the experiment requires. For this demo experiment, two dif-
ferent kinds of tasks are created:

1. Subjects will read instructions.
2. Subjects will see an image on the screen and press a key in
response.

These are two very simple tasks that many different exper-
iments would use, and existing jsPsych plugins will accom-
plish both. The jspsych-text plugin displays a block of text to
the user (it can be used to display any HTML content), which
can be used to show instructions. The jspsych-single-stim
plugin displays a stimulus (either a single image file or an
HTML element) on the screen and records a keyboard re-
sponse from the subject. This plugin can be used to show the
flanker task stimuli and to measure the RT.

To load a plugin, insert the appropriate <script> tag after
the <script> tag that loads the core jspsych.js file. Plugins can
be loaded in any order, but they must come after the jspsych.js
file is loaded. Here is the <head> section of the index.html file
after the appropriate <script> tags have been inserted:

<head>
<title>My experiment</title>
<script src="scripts/jquery-1.11.0.min.Jjs">
</script>
<script src="scripts/jspsych.js”>
</script>
<script src="scripts/jspsych-text.js”>
</script>
<script src="scripts/jspsych-single-stim.js”>
</script>

</head>

Step 5 Creating the experiment description

In order for jsPsych to run the experiment, we have to
describe the structure of the experiment to jsPsych. This can
be done by specifying a set of blocks, in which each block is a
set of trials using a single plugin. For example, if the subject is
to see 20 flanker stimuli in a row, we would create a block of
20 trials using the jspsych-single-stim plugin.

To specify a block, we create a JavaScript object
(JavaScript objects can be created using { } brackets) that tells
jsPsych which plugin to use and what parameters to use for
that plugin. For example:

var experiment block = ({
type: “text”,
parameterl: value,
parameter2: value,
// and so on

}

The first part of the object is a parameter called fype. This
parameter must always be set. It tells jsPsych which plugin to use
for the block. In this case, the block will use the jspsych-text
plugin. After the declaration of the #ype parameter, other

parameters can be specified. Each plugin has a different set of
parameters. This is a big part of what makes jsPsych a flexible
library; as the need arises, different plugins can be created with
different parameters. To figure out what parameters a plugin uses,
you can look it up at the jsPsych wiki (https://github.com/
jodeleeuw/jsPsych/wiki/List-of-Plugins), or you can view the
source code for a plugin (https:/github.com/jodelecuw/jsPsych/
tree/master/plugins). The source code for all of the
nondevelopmental plugins contains a header section that
describes the parameter options in detail.

The first block that we need in our demo experiment is the
instruction block. We are using the jspsych-text plugin for this.
The only parameter (other than the type parameter) that must be
set for this plugin is called fext, and unsurprisingly, this param-
eter specifies what text is displayed to the subject. (A few
optional parameters could also be set, such as what key the
subject can press to advance to the next part of the experiment,
but jsPsych has default values that can be used, and you only
need to set a value if you want to override the default value.)

One potentially confusing aspect of defining a value for
this parameter is that the value for the text parameter is going
to be an array. This is because we can specify multiple #rials in
a single block, and jsPsych will automatically take each ele-
ment of the array and construct a new trial. To illustrate this, I
will break the instructions into two parts. The following is
JavaScript code added inside the <script> tag near the bottom
of the document described in Step 3.

// Experiment Instructions

var welcome message = "<div id='instructions'><p>Welcome to the " +
"experiment. Press enter to begin.</p></div>";

var instructions = “<div id='instructions '><p>You will see a " +
"series of images that look similar to this:</p><p>" +
"<img src='img/incongruent_right.gif'></p><p>Press the arrow " +
"key that corresponds to the direction that the middle arrow " +
"is pointing. For example, in this case you would press the " +
"right arrow key.</p><p>Press enter to start.</p>";

var instruction block = {

type: “text”,

};text: [welcome message, instructions]

The code above defines two variables that contain strings of
HTML code. Because the strings are too long to fit on a single
line, they are broken up into multiple lines, and then concatenated
together with the + operator. These two strings are the two parts of
the instructions that will show for the subject. The third variable is
a block that we will use as part of the experiment description for
jsPsych. It specifies the type of plugin and the key parameter for
that plugin. The text plugin will automatically show each different
string defined in the fext parameter in sequence, advancing to the
next string when the enter key is pressed by the subject.

Now we can look at how to send this information to
jsPsych.

In the most basic case, you will only need to call a single
method for jsPsych to run the experiment. This is the init()
method. The init method has a single parameter, which is an
object that specifies different options. The only option that
you must specify is the “experiment_structure” option. This is

@ Springer


https://github.com/jodeleeuw/jsPsych/wiki/List-of-Plugins
https://github.com/jodeleeuw/jsPsych/wiki/List-of-Plugins
https://github.com/jodeleeuw/jsPsych/tree/master/plugins
https://github.com/jodeleeuw/jsPsych/tree/master/plugins

Behav Res

how you tell jsPsych the structure of your experiment. The
value for the experiment structure option is an array of
blocks. The blocks will be executed in the order that they
appear in the array. For now, we have only a single block using
the jspsych-text plugin. This is what the jsPsych.init() call
looks like for the experiment so far:
JjsPsych.init ({

experiment structure:
I3

Although the version of the init method above will work, it
is often very useful to specify which HTML element will
display the jsPsych content. This can be done by using the
display_element option in the init method. If this option is
omitted, then jsPsych will automatically display the content in
the <body> element (and will create this element if it does not
exist). Specifying what element jsPsych appears in provides
control over how the content is displayed. CSS rules can be
specified to alter the appearance of the jsPsych content (see
Step 10). There is also the possibility of mixing jsPsych
content with other content, or displaying elements on the
screen like a progress bar that persists from trial to trial. Here
we will add a <div> element and display the jsPsych content
in the <div>. First, add the following HTML in the <body>
section of the HTML document:

<body>
<div id="jspsych target”></div>
</body>

[instruction block]

Then change the init method to specify the display element
option:
JjsPsych.init ({
display element: S (“#jspsych target”),
experiment structure: [instruction block]

P

The experiment will run with the code that we have now
created. Place the jsPsych.init method call after the JavaScript
code that defines the instruction_block variable. Only the instruc-
tion block will be displayed so far (which will show the two
different messages we defined in that block), but this will confirm
that jsPsych is working. The complete code up to this point can be
found at www.jspsych.org/examples/tutorial/part].html. You can
use the View Source option in your browser to see the code for the
live version.

Step 6 Finishing the experiment description

At this point, all of the basic functionality of jsPsych has been
covered. The following material fills out the rest of the experiment
description using the same mechanics described above: define an
experiment block using JavaScript, and add it to the
experiment_structure parameter in the jsPsych.init method.

To display the stimuli for the flanker task, we use the jspsych-
single-stim plugin. This plugin shows a stimulus on the screen

@ Springer

and records the key that the subject presses in response. It also
records the RT. To use it, we need to specify what stimuli to
show. We can specify the stimuli as relative paths to image files.
As we did with the jspsych-text plugin, we can specify multiple
trials within a single block statement. We do that with the single-
stim plugin by giving an array of stimuli to show. The plugin will
automatically create a trial for each element in the array.

We only have four different stimuli for this experiment, but
we want to show them multiple times. We do that by simply
repeating elements in the array. The single-stim plugin will not
do randomization or multiple presentations for us; we must build
the order outside of jsPsych, and then tell jsPsych what to do.
There are many reasonable ways to do this. Here is one example:

First, define two variables above the experiment instruc-
tions we created earlier. One variable is the number of trials
shown to the subject, and the second is an array containing the
paths of the four images:

var n trials = 20;

var stimuli = [
"img/congruent left.gif",
"img/congruent right.gif",
"img/incongruent left.gif",
"img/incongruent:right.gif"

17

Below that, create an array to hold a random order of these
stimuli.

var stimuli random order = [];

Finally, just below the above code, add a random selection
from the stimuli array to the stimuli random_order array
n_trials times, using a for loop.
for (var i = 0; i < n_trials; i++) {

var random choice = Math.floor (Math.random() * stimuli.length);
stimuli_random_order.push(stimuli[random choicel]);

Once that code executes, stimuli_random_order will have
20 randomly selected stimuli to present. From an experimental
design perspective, this process is crude. Better versions might
ensure that all four stimuli are shown the same number of
times. This illustrates an important design feature of jsPsych:
It does not lock the experimenter into a particular method for
randomization or ordering; the experimenter can choose what-
ever method is appropriate for the experimental design. How-
ever, this flexibility comes at the cost of increasing the amount
of code that the experimenter must write.

Now we have everything we need to define the single-stim
block. The only parameter that we must specify that is not already
defined is called choices. Choices is an array of integers. The
integers correspond to JavaScript key codes, which represent keys
on the keyboard (a useful tool for finding key codes is available at
www.cambiaresearch.com/articles/15/javascript-char-codes-key-
codes). The single-stim plugin will only continue if the user selects
a key that is in the choices array. This means that the subject can
be forced to make a binary (or any n-alternative) choice. For this


http://www.jspsych.org/examples/tutorial/part1.html
http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes
http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes

Behav Res

experiment, we want the binary choice to be the left arrow key
(key code 37) or the right arrow key (key code 39). Add this line
after the line where we defined the instruction_block:

var test block = {

type: “single-stim”,
stimuli: stimuli random order,
choices: [37, 39]

}

JsPsych.init ({
display element: $(“#jspsych target”),
experiment structure: [
instruction block,
test block
]
1)

Next, amend the jsPsych.init() function to include the new
block:

If you are following along, go ahead and run the experi-
ment. After the instructions, you should see 20 trials with
different flanker stimuli.

The final block to add is a simple debriefing. Add the
variable containing the debriefing string and the variable to
define the block, and then modify the init method to include
the new debriefing block:

var debrief = "<div id=‘instructions’><p>Thank you for " +
"participating! Press enter to see the data.</p></div>";

var debrief block = {
type: “text”,

text: [debrief]

}i

jsPsych.init ({
display element: $(‘#jspsych target’),
experiment structure: [
instruction_block,
test_block,
debrief block]
)i

Step 7 Looking at the data using an event-related function call

The debrief instructions indicated that pressing Enter
would reveal the data, but so far the only thing that happens
is the experiment ends and a blank screen is shown. We can
use the event that is triggered by the end of the experiment to
display the raw data to the user. Obviously this is not some-
thing that would happen in a normal experimental context. It is
included here to illustrate event-related function calls and to
show what the raw data recorded by jsPsych look like.

To add an event-related function call, we need to modify
the jsPsych.init() method to tell jsPsych what function to use
for the event. The event that we are interested in is on_finish,
which is triggered at the very end of the experiment. By
default, jsPsych will pass the complete data object as the first
parameter to whatever function is defined. Here we are going
to define the function within the jsPsych.init() method call:

jsPsych.init ({
display element: $(‘#jspsych target’),
experiment structure: [
instruction block,
test block,
debrief block],
on finish: function(data) {
$ (‘#jspsych_target’) .append($ (‘<pre>’, {
html: JSON.stringify(data, undefined, 2)
});
}
}) i

The code inside the function is adding a <pre> element to
the HTML document and inserting the string representation of
the data inside the new <pre> element. It is using jQuery’s
selectors and append method to do this. You can learn more
about this at the jQuery documentation (http://api.jquery.
com/). You can also read about the JSON.stringify method
here: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global _Objects/JSON/stringify.

Running the experiment at this point should display the
data at the very end. It should look something like this:

[
[

{

"trial type": "text",
"trial index": 0,
"rt": 1751
"trial type": "text",
"trial index": 1,
"rt": 12159
]I
[{
"trial type": "single-stim",
"trial index": 0,
"rt": 11336,
"stimulus": "img/congruent left.gif",

"key press": 37

b

. trials 1-18

{
"trial type": "single-stim",
"trial index": 19,
"rt": 624,
"stimulus": "img/congruent left.gif",
"key press": 37
}
] r
[
{
"trial type": "text",
"trial index": 0,
"rt": 1724
}

]

@ Springer


http://api.jquery.com/
http://api.jquery.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify

Behav Res

Notice that the data are organized by blocks, and then by trial
within each block. Numerous variables are recorded for each
trial, including what key the user pressed, the RT, what stimulus
was shown, and what trial number it was within the block.

Although this hierarchically arranged data object may
be useful for certain kinds of programming tasks, other
formats may be more useful for data analysis. jsPsych
currently offers one alternative format, a CSV string,
suitable for importing into various spreadsheet and sta-
tistical analysis packages. To see the CSV representation
of the data, modify the on_finish function definition to
use the jsPsych.dataAsCSV() method:
jsPsych.init ({

display element: $(‘#jspsych target’),

experiment structure: [

instruction block,
test block,
debrief block],
on finish: function(data) {
$ (‘#jspsych _target’) .append($ (‘<pre>’, {
html: jsPsych.dataAsCSV ()
}) i

}
)i

Now when the experiment finishes, the data should display
in CSV format, with the first line representing the names of the
columns, and each subsequent line representing a single trial.

Finally, it may be useful to have a downloaded version of the
data. As was discussed in the Overview section, the following
technique is not meant to be a solution for permanent data
storage. This technique will enable the subject’s computer to
download data, and for online experiments this clearly will not
work (but it may be reasonable to use this technique in a
laboratory setting). Finally, the following technique only works
with the latest versions of Chrome and Firefox at the time of
writing, although it is likely that other major browsers will
eventually support this as well. To download a CSV file con-
taining the data, simple call the jsPsych.saveCSVdata() meth-
od, with a file name as the parameter:

jsPsych.init ({
display element: $(‘#jspsych target’),
experimentistructure: [
instruction_block,
test block,
debrief block],
on_finish: function(data) {
$ (“#jspsych target’) .append($ (‘<pre>’, {
html: jsPsych.dataAsCSV ()
1)
jsPsych.saveCSVData (“demo experiment data.csv”);
}
}) i

After modifying the code and running the experiment, you
should see the data on screen and also be prompted to down-
load a CSV file containing the data, if you are using an up-to-
date version of Chrome or Firefox.

@ Springer

Step 8 Using the optional data object

Each jsPsych plugin defines in advance what data it will
store. The single-stim plugin, for example, records information
about what stimulus was shown, what key the subject pressed,
and the RT. However, in some cases it may be desirable to add
additional information about the trial that is not defined by the
plugin. In our experiment, we have two kinds of stimuli: incon-
gruent and congruent. We may want to record which type of
stimulus was shown on a trial, so that it is easy to divide the data
for analysis. (Note that we could do this in principle by looking
at which stimulus was shown on a trial, but this might not be
possible in every context, and it might save time to record this
information in the data and not recreate it during analysis.)

All plugins support a feature called the optional data object.
There is a parameter called data for every plugin, which
accepts an array of objects. The array needs to be the same
length as the number of trials defined for that block. Each
element of the array can contain arbitrary data that are
appended to the data for the trial. Here is an example.

We are going to add a value to each trial in the testing block
that indicates whether the stimulus is incongruent or congru-
ent. To do this, we will modify our original code that gener-
ated the random order of stimuli. We defined an array that had
the four different stimuli. Now define a corresponding array
that indicates the type of each stimulus:

var n trials = 20;

var stimuli = [
"img/congruent left.gif",
"img/congruent right.gif",
"img/incongruent left.gif",
"img/incongruent:right.gif"

17

var stimuli types = [
W congrueng” ,
“congruent”,
“incongruent”,
“incongruent”

17

Note that the elements of the two arrays correspond to each
other: The first stimulus in the stimulus array is congruent; the
third is incongruent; and so forth.

We can modify the code that generated the random order to
also generate an array containing a data object for each trial. The
array of data objects will be the same length as the array of stimuli,
and the elements of the arrays will correspond to each other:
var stimuli_random_order = [];
var opt_data = [];
for (var i = 0; i < n_trials; i++) {

var random_choice = Math.floor (Math.random() * stimuli.length);
stimuli_random order.push (stimuli[random_choice]);

opt_data.push ({

stimulus_type: stimuli_ types[random_choice]
b
}



Behav Res

We added a new item called stimulus_type, and the value of
the item is either “congruent” or “incongruent,” depending on
which stimulus is shown for that trial. The final step is to
modify the definition of the test block to include the data
parameter:

var test block = {
type: Ksingle—stim",
stimuli: stimuli random order,
choices: [37, 39], B
data: opt data

With this modification, each trial will be tagged
with an additional item that indicates what kind of
stimulus was presented. This information will be visi-
ble when the data are displayed at the end of the
experiment.

Step 9 Modifying default parameters

Plugins often have several parameters that have rea-
sonable default values. The default value can be over-
ridden in cases in which the experimenter wants to
specify a different value. One such parameter for the
jspsych-text plugin is called timing post trial. This de-
fines how long a blank screen is shown after the text is
removed from the screen. For this experiment, we might
want a slightly longer delay between the time that the
instructions disappear and the presentation of the first
stimulus, to give the subject time to position his or her
fingers over the response keys. We can modify the
timing post_trial parameter for the first block of the text
plugin like this:

var instruction block = {
type: “text”,
text: [welcome message, instructions],

timing post trial: 2500
}i

This change will cause a 2,500-ms delay between the time
that the instructions disappear and the start of the testing
block.

Step 10 Changing the visual appearance of the experiment

Most jsPsych plugins do not modify the visual style of
elements on the Web page. Instead, they simply add
elements (like text or images) and leave the visual style
of the elements up to the experimenter. CSS can be used
to modify the visual appearance of jsPsych elements.
Covering CSS in any depth is outside the scope of this
tutorial. Instead, I have created a simple style sheet (a file
with a .css extension) that can be applied to the example.

It changes the font, font size, alignment of elements, and
spacing of elements:
/* experiment.css */
body {
background: #fff;
margin: 0;
padding: 0;
font-size: 18px;

font-family: 'Palatino Linotype', FreeSerif, serif;
}

#jspsych_target {
width: 1000px;
margin-left: auto;
margin-right: auto;
margin-top: 50px;
text-align: center;

}

#jispsych_target pre {
text-align: left;
}

#instructions {
width: 500px;
margin-left: auto;
margin-right: auto;
text-align: left;

To include this in the experiment, copy the CSS code into a
file named experiment.css (contained in the same directory as
the index.html file for the experiment) and insert this <link>
tag in the <head> section of the HTML document:

<link href="experiment.css” rel="stylesheet”></link>

This is the end of the tutorial. The code should now match
exactly what is available at www.jspsych.org/examples/
tutorial/. You can use the View Source option in your
browser to compare your code with the online version.

Learning more

This article has given a broad overview of jsPsych,
discussing the motivation and design principles behind the
library. The tutorial covered the basic steps involved in
creating an experiment with jsPsych. Several advanced
topics were not covered, but these are covered in detail
within the jsPsych project wiki (https://github.com/
jodeleeuw/jsPsych/wiki). In particular, the wiki provides
information on how to create new plugins for jsPsych, in
the event that an experiment cannot be assembled using the
plugins that already exist. The wiki also has more
documentation for the many plugins that were not
discussed in this tutorial and for features of the library
that were not covered in depth. Finally, the wiki has
information about topics that are not specifically related to
the jsPsych library, but are important for online
experiments, such as linking jsPsych to permanent data

@ Springer


http://www.jspsych.org/examples/tutorial/
http://www.jspsych.org/examples/tutorial/
https://github.com/jodeleeuw/jsPsych/wiki
https://github.com/jodeleeuw/jsPsych/wiki

Behav Res

storage in a database and authenticating Mechanical Turk
users for jsPsych experiments.

Author note This material is based on work that was supported by a
National Science Foundation Graduate Research Fellowship under Grant
No. DGE-1342962. The author thanks Rob Goldstone, Nicholas de
Leeuw, Rick Hullinger, and Peter Todd for feedback and suggestions on
an earlier draft of this article, as well as the numerous people who have
used jsPsych throughout the development process and have provided
valuable feedback.

References

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science, 6, 3-5. doi:10.1177/
1745691610393980

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating
Amazon’s Mechanical Turk as a tool for experimental behavioral
research. PloS ONE, 8, €51382. doi:10.1371/journal.pone.0057410

Eriksen, B., & Eriksen, C. (1974). Effects of noise letters upon the
identification of a target letter in a nonsearch task. Perception &
Psychophysics, 16, 143-149. doi:10.3758/BF03203267

Fox, E. (1995). Negative priming from ignored distractors in visual
selection: A review. Psychonomic Bulletin & Review; 2, 129—139.
doi:10.3758/BF03210958

Goldstone, R., Rogosky, B., Pevtzow, R., & Blair, M. (2005). Perceptual
and semantic reorganization during category learning. In H. Cohen

@ Springer

& C. Lefebvre (Eds.), Handbook of categorization in cognitive
science (pp. 651-678). Amsterdam: Elsevier.

Goodman, J. K., Cryder, C. E., & Cheema, A. (2013). Data collection in a
flat world: The strengths and weaknesses of Mechanical Turk sam-
ples. Journal of Behavioral Decision Making, 26, 213-224. doi:10.
1002/bdm.1753

Kopp, B., Mattler, U., & Rist, F. (1994). Selective attention and response
competition in schizophrenic patients. Psychiatry Research, 53,
129-139.

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44, 1—
23. doi:10.3758/s13428-011-0124-6

McDonnell, J. V., Martin, J. B., Markant, D. B., Coenen, A., Rich, A. S.,
& Gureckis, T. M. (2012). psiTurk (Version 1.02) [Software]. New
York, NY: New York University. Available from https:/github.com/
NYUCCL/psiTurk

Palmer, S. E. (1977). Hierarchical structure in perceptual representation.
Cognitive Psychology, 9, 441-474. doi:10.1016/0010-0285(77)90016-0

Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments
on Amazon Mechanical Turk. Judment and Decision Making, 5,
411-419.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for
generating and visualizing experimental designs and procedures.
Behavior Research Methods, Instruments, & Computers, 34, 234—
240. doi:10.3758/BF03195449

Ross, J., Irani, L., Silberman, M. S., Zaldivar, A., & Tomlinson,
B. (2010). Who are the turkers? Worker demographics in
Amazon Mechanical Turk. In CHI ’10: CHI Conference on
Human Factors in Computing Systems (pp. 2863-2872). New
York: ACM.

Zwaan, R. A., & Pecher, D. (2012). Revisiting mental simulation in
language comprehension: six replication attempts. PloS ONE, 7,
e51382. doi:10.1371/journal.pone.0051382


http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1177/1745691610393980
http://dx.doi.org/10.1371/journal.pone.0057410
http://dx.doi.org/10.3758/BF03203267
http://dx.doi.org/10.3758/BF03210958
http://dx.doi.org/10.1002/bdm.1753
http://dx.doi.org/10.1002/bdm.1753
http://dx.doi.org/10.3758/s13428-011-0124-6
https://github.com/NYUC<WordBreak>CL/psiTurk
https://github.com/NYUC<WordBreak>CL/psiTurk
https://github.com/NYUC<WordBreak>CL/psiTurk
http://dx.doi.org/10.1016/0010-0285(77)90016-0
http://dx.doi.org/10.3758/BF03195449
http://dx.doi.org/10.1371/journal.pone.0051382

	jsPsych: A JavaScript library for creating behavioral experiments in a Web browser
	Abstract
	Overview of jsPsych
	Features of the core library
	Current limitations

	Creating an experiment with jsPsych: Eriksen flanker task
	Learning more
	References


